Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704253

RESUMO

Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.

2.
Front Cell Infect Microbiol ; 14: 1354880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465236

RESUMO

Plasmodium vivax, the most widespread human malaria parasite, and P. knowlesi, an emerging Plasmodium that infects humans, are the phylogenetically closest malarial species that infect humans, which may induce cross-species reactivity across most co-endemic areas in Southeast Asia. The thrombospondin-related anonymous protein (TRAP) family is indispensable for motility and host cell invasion in the growth and development of Plasmodium parasites. The merozoite-specific TRAP (MTRAP), expressed in blood-stage merozoites, is supposed to be essential for human erythrocyte invasion. We aimed to characterize MTRAPs in blood-stage P. vivax and P. knowlesi parasites and ascertain their cross-species immunoreactivity. Recombinant P. vivax and P. knowlesi MTRAPs of full-length ectodomains were expressed in a mammalian expression system. The MTRAP-specific immunoglobulin G, obtained from immune animals, was used in an immunofluorescence assay for subcellular localization and invasion inhibitory activity in blood-stage parasites was determined. The cross-species humoral immune responses were analyzed in the sera of patients with P. vivax or P. knowlesi infections. The MTRAPs of P. vivax (PvMTRAP) and P. knowlesi (PkMTRAP) were localized on the rhoptry body of merozoites in blood-stage parasites. Both anti-PvMTRAP and anti-PkMTRAP antibodies inhibited erythrocyte invasion of blood-stage P. knowlesi parasites. The humoral immune response to PvMTRAP showed high immunogenicity, longevity, and cross-species immunoreactivity with P. knowlesi. MTRAPs are promising candidates for development of vaccines and therapeutics against vivax and knowlesi malaria.


Assuntos
Malária Vivax , Malária , Parasitos , Plasmodium , Animais , Humanos , Plasmodium vivax/genética , Parasitos/metabolismo , Merozoítos , Trombospondinas/metabolismo , Plasmodium/metabolismo , Malária/parasitologia , Malária Vivax/parasitologia , Proteínas de Protozoários/metabolismo , Mamíferos/metabolismo
3.
Malar J ; 22(1): 369, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049801

RESUMO

BACKGROUND: Plasmodium vivax has been more resistant to various control measures than Plasmodium falciparum malaria because of its greater transmissibility and ability to produce latent parasite forms. Therefore, developing P. vivax vaccines and therapeutic monoclonal antibodies (humAbs) remains a high priority. The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to P. vivax invasion of reticulocytes. P. vivax expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and the DARC: PvDBP interaction is critical for P. vivax blood stage malaria. Therefore, PvDBP is a leading vaccine candidate for P. vivax and a target for therapeutic human monoclonal antibodies (humAbs). METHODS: Here, the functional activity of humAbs derived from naturally exposed and vaccinated individuals are compared for the first time using easily cultured Plasmodium knowlesi (P. knowlesi) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. This model was used to evaluate the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). RESULTS: The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 µg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 µg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10 and 100 µg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 µg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. Invasion inhibition efficacy by some mAbs shown with PkPvDBPOR was closely replicated using P. vivax clinical isolates. CONCLUSION: The PkPvDBPOR transgenic model is a robust surrogate of P. vivax to assess invasion and growth inhibition of human monoclonal Abs recognizing PvDBP individually and in combination. There was no synergistic interaction for growth inhibition with the humAbs tested here that target different epitopes or subdomains of PvDBP, suggesting little benefit in clinical trials using combinations of these humAbs.


Assuntos
Vacinas Antimaláricas , Malária Vivax , Plasmodium knowlesi , Animais , Humanos , Plasmodium vivax , Anticorpos Antiprotozoários , Antígenos de Protozoários , Proteínas de Protozoários/metabolismo , Malária Vivax/parasitologia , Eritrócitos/parasitologia , Animais Geneticamente Modificados , Sistema do Grupo Sanguíneo Duffy/metabolismo
4.
Front Cell Infect Microbiol ; 13: 1314533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111629

RESUMO

The zoonotic malaria parasite Plasmodium knowlesi is an important public health concern in Southeast Asia. Invasion of host erythrocytes is essential for parasite growth, and thus, understanding the repertoire of parasite proteins that enable this process is vital for identifying vaccine candidates and how some species are able to cause zoonotic infection. Merozoite surface protein 1 (MSP1) is found in all malaria parasite species and is perhaps the most well-studied as a potential vaccine candidate. While MSP1 is encoded by a single gene in P. falciparum, all other human infective species (P. vivax, P. knowlesi, P. ovale, and P. malariae) additionally encode a divergent paralogue known as MSP1P, and little is known about its role or potential functional redundancy with MSP1. We, therefore, studied the function of P. knowlesi merozoite surface protein 1 paralog (PkMSP1P), using both recombinant protein and CRISPR-Cas9 genome editing. The recombinant 19-kDa C-terminus of PkMSP1P (PkMSP1P-19) was shown to bind specifically to human reticulocytes. However, immunoblotting data suggested that PkMSP1P-19-induced antibodies can recognize PkMSP1-19 and vice versa, confounding our ability to separate the properties of these two proteins. Targeted disruption of the pkmsp1p gene profoundly impacts parasite growth, demonstrating for the first time that PkMSP1P is important in in vitro growth of P. knowlesi and likely plays a distinct role from PkMSP1. Importantly, the MSP1P KO also enabled functional characterization of the PkMSP1P-19 antibodies, revealing clear immune cross-reactivity between the two paralogues, highlighting the vital importance of genetic studies in contextualizing recombinant protein studies.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Plasmodium knowlesi , Vacinas , Humanos , Proteína 1 de Superfície de Merozoito/genética , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Malária/parasitologia , Eritrócitos/parasitologia , Anticorpos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Nat Commun ; 14(1): 4619, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528099

RESUMO

Invasion of red blood cells (RBCs) by Plasmodium merozoites is critical to their continued survival within the host. Two major protein families, the Duffy binding-like proteins (DBPs/EBAs) and the reticulocyte binding like proteins (RBLs/RHs) have been studied extensively in P. falciparum and are hypothesized to have overlapping, but critical roles just prior to host cell entry. The zoonotic malaria parasite, P. knowlesi, has larger invasive merozoites and contains a smaller, less redundant, DBP and RBL repertoire than P. falciparum. One DBP (DBPα) and one RBL, normocyte binding protein Xa (NBPXa) are essential for invasion of human RBCs. Taking advantage of the unique biological features of P. knowlesi and iterative CRISPR-Cas9 genome editing, we determine the precise order of key invasion milestones and demonstrate distinct roles for each family. These distinct roles support a mechanism for phased commitment to invasion and can be targeted synergistically with invasion inhibitory antibodies.


Assuntos
Malária , Parasitos , Plasmodium knowlesi , Animais , Humanos , Proteínas de Transporte/metabolismo , Parasitos/metabolismo , Malária/parasitologia , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Proteínas de Protozoários/metabolismo , Eritrócitos/parasitologia , Merozoítos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
6.
J Cardiothorac Surg ; 18(1): 252, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620956

RESUMO

OBJECTIVES: Performing wedge resection rather than lobectomy for primary lung cancer remains controversial. Recent studies demonstrate no survival advantage for non-anatomical resection compared to lobectomy in patients with early-stage lung cancer. The objective of this study was to investigate whether in patients with T1 tumours, non-anatomical wedge resection is associated with equivalent survival to lobectomy. METHODS: This was a retrospective cohort study of patients who underwent lung resection at the Lancashire Cardiac Centre between April 2005 and April 2018. Patients were subjected to multidisciplinary team discussion. The extent of resection was decided by the team based on British Thoracic Society guidelines. The primary outcome was overall survival. Propensity matching of patients with T1 tumours was also performed to determine whether differences in survival rates exist in a subset of these patients with balanced pre-operative characteristics. RESULTS: There were 187 patients who underwent non-anatomical wedge resection and 431 patients who underwent lobectomy. Cox modelling demonstrated no survival difference between groups for the first 1.6 years then a risk of death 3-fold higher for wedge resection group after 1.6 years (HR 3.14, CI 1.98-4.79). Propensity matching yielded 152 pairs for which 5-year survival was 66.2% for the lobectomy group and 38.5% for the non-anatomical wedge group (SMD = 0.58, p = 0.003). CONCLUSIONS: Non-anatomical wedge resection was associated with significantly reduced 5-year survival compared to lobectomy in matched patients. Lobectomy should remain the standard of care for patients with early-stage lung cancer who are fit enough to undergo surgical resection.


Assuntos
Neoplasias Pulmonares , Humanos , Estudos Retrospectivos , Neoplasias Pulmonares/cirurgia , Coração , Tórax
7.
Sci Transl Med ; 15(704): eadf1782, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37437014

RESUMO

There are no licensed vaccines against Plasmodium vivax. We conducted two phase 1/2a clinical trials to assess two vaccines targeting P. vivax Duffy-binding protein region II (PvDBPII). Recombinant viral vaccines using chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) vectors as well as a protein and adjuvant formulation (PvDBPII/Matrix-M) were tested in both a standard and a delayed dosing regimen. Volunteers underwent controlled human malaria infection (CHMI) after their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparisons of parasite multiplication rates in the blood. PvDBPII/Matrix-M, given in a delayed dosing regimen, elicited the highest antibody responses and reduced the mean parasite multiplication rate after CHMI by 51% (n = 6) compared with unvaccinated controls (n = 13), whereas no other vaccine or regimen affected parasite growth. Both viral-vectored and protein vaccines were well tolerated and elicited expected, short-lived adverse events. Together, these results support further clinical evaluation of the PvDBPII/Matrix-M P. vivax vaccine.


Assuntos
Malária , Parasitos , Humanos , Animais , Plasmodium vivax , Vacinação
8.
Nat Commun ; 14(1): 3637, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336887

RESUMO

The symptoms of malaria occur during the blood stage of infection, when the parasite replicates within human red blood cells. The human malaria parasite, Plasmodium vivax, selectively invades reticulocytes in a process which requires an interaction between the ectodomain of the human DARC receptor and the Plasmodium vivax Duffy-binding protein, PvDBP. Previous studies have revealed that a small helical peptide from DARC binds to region II of PvDBP (PvDBP-RII). However, it is also known that sulphation of tyrosine residues on DARC affects its binding to PvDBP and these residues were not observed in previous structures. We therefore present the structure of PvDBP-RII bound to sulphated DARC peptide, showing that a sulphate on tyrosine 41 binds to a charged pocket on PvDBP-RII. We use molecular dynamics simulations, affinity measurements and growth-inhibition experiments in parasites to confirm the importance of this interaction. We also reveal the epitope for vaccine-elicited growth-inhibitory antibody DB1. This provides a complete understanding of the binding of PvDBP-RII to DARC and will guide the design of vaccines and therapeutics to target this essential interaction.


Assuntos
Sistema do Grupo Sanguíneo Duffy , Malária Vivax , Plasmodium vivax , Humanos , Antígenos de Protozoários , Eritrócitos/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax/metabolismo , Proteínas de Protozoários/metabolismo , Reticulócitos/metabolismo , Tirosina/metabolismo
9.
bioRxiv ; 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36945444

RESUMO

The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to Plasmodium vivax (Pv) invasion of reticulocytes. Pv expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and their protein-protein interaction is central to vivax blood stage malaria. Here we compared the functional activity of humAbs derived from naturally exposed and vaccinated individuals for the first time using easily cultured P. knowlesi (Pk) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. Using this model, we evaluated the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 µg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 µg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10-100 µg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 µg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. This PkPvDBPOR model system enables efficient assessment of NA and VI humAbs individually and in combination.

10.
Sci Rep ; 13(1): 2142, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750737

RESUMO

The zoonotic Plasmodium knowlesi parasite is a growing public health concern in Southeast Asia, especially in Malaysia, where elimination of P. falciparum and P. vivax malaria has been the focus of control efforts. Understanding of the genetic diversity of P. knowlesi parasites can provide insights into its evolution, population structure, diagnostics, transmission dynamics, and the emergence of drug resistance. Previous work has revealed that P. knowlesi fall into three main sub-populations distinguished by a combination of geographical location and macaque host (Macaca fascicularis and M. nemestrina). It has been shown that Malaysian Borneo groups display profound heterogeneity with long regions of high or low divergence resulting in mosaic patterns between sub-populations, with some evidence of chromosomal-segment exchanges. However, the genetic structure of non-Borneo sub-populations is less clear. By gathering one of the largest collections of P. knowlesi whole-genome sequencing data, we studied structural genomic changes across sub-populations, with the analysis revealing differences in Borneo clusters linked to mosquito-related stages of the parasite cycle, in contrast to differences in host-related stages for the Peninsular group. Our work identifies new genetic exchange events, including introgressions between Malaysian Peninsular and M. nemestrina-associated clusters on various chromosomes, including in parasite invasion genes (DBP[Formula: see text], NBPX[Formula: see text] and NBPX[Formula: see text]), and important proteins expressed in the vertebrate parasite stages. Recombination events appear to have occurred between the Peninsular and M. fascicularis-associated groups, including in the DBP[Formula: see text] and DBP[Formula: see text] invasion associated genes. Overall, our work finds that genetic exchange events have occurred among the recognised contemporary groups of P. knowlesi parasites during their evolutionary history, leading to apparent mosaicism between these sub-populations. These findings generate new hypotheses relevant to parasite evolutionary biology and P. knowlesi epidemiology, which can inform malaria control approaches to containing the impact of zoonotic malaria on human communities.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Plasmodium knowlesi , Animais , Humanos , Variação Genética , Plasmodium knowlesi/genética , Macaca fascicularis/parasitologia , Malária/parasitologia , Malásia/epidemiologia , Genética Populacional , Seleção Genética
11.
Aorta (Stamford) ; 11(1): 44-46, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36848912

RESUMO

We report the case of a 44-year-old gentleman who underwent coarctation repair at the age of 7 years. He was lost to follow-up and represented. Computed tomography scan demonstrated a 9.8-cm diameter aortic aneurysm involving the distal aortic arch and proximal descending aorta. Open surgery was performed to repair the aneurysm. The patient made an unremarkable recovery. He was followed up 12 weeks later, and significant improvement in preoperative symptoms was observed. This case demonstrates the importance of long-term follow-up.

12.
J Infect Dis ; 227(10): 1121-1126, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36478252

RESUMO

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized Plasmodium cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F. Introduction of this mutation using clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) increased sensitivity to mefloquine, but had no significant effect on sensitivity to chloroquine, amodiaquine, piperaquine, and artesunate. To our knowledge, this is the first reported use of CRISPR-Cas9 in P. cynomolgi, and the first reported integrative genetic manipulation of this species.


Assuntos
Antimaláricos , Plasmodium cynomolgi , Mefloquina/farmacologia , Antimaláricos/farmacologia , Cloroquina/farmacologia , Plasmodium vivax/genética , Resistência a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum
13.
mBio ; 13(5): e0117822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190127

RESUMO

Several unrelated classes of antimalarial compounds developed against Plasmodium falciparum target a parasite-specific P-type ATP-dependent Na+ pump, PfATP4. We have previously shown that other malaria parasite species infecting humans are less susceptible to these compounds. Here, we generated a series of transgenic Plasmodium knowlesi orthologue replacement (OR) lines in which the endogenous pkatp4 locus was replaced by a recodonized P. knowlesi atp4 (pkatp4) coding region or the orthologous coding region from P. falciparum, Plasmodium malariae, Plasmodium ovale subsp. curtisi, or Plasmodium vivax. Each OR transgenic line displayed a similar growth pattern to the parental P. knowlesi line. We found significant orthologue-specific differences in parasite susceptibility to three chemically unrelated ATP4 inhibitors, but not to comparator drugs, among the P. knowlesi OR lines. The PfATP4OR transgenic line of P. knowlesi was significantly more susceptible than our control PkATP4OR line to three ATP4 inhibitors: cipargamin, PA21A092, and SJ733. The PvATP4OR and PmATP4OR lines were similarly susceptible to the control PkATP4OR line, but the PocATP4OR line was significantly less susceptible to all ATP4 inhibitors than the PkATP4OR line. Cipargamin-induced inhibition of Na+ efflux was also significantly greater with the P. falciparum orthologue of ATP4. This confirms that species-specific susceptibility differences previously observed in ex vivo studies of human isolates are partly or wholly enshrined in the primary amino acid sequences of the respective ATP4 orthologues and highlights the need to monitor efficacy of investigational malaria drugs against multiple species. P. knowlesi is now established as an important in vitro model for studying drug susceptibility in non-falciparum malaria parasites. IMPORTANCE Effective drugs are vital to minimize the illness and death caused by malaria. Development of new drugs becomes ever more urgent as drug resistance emerges. Among promising compounds now being developed to treat malaria are several unrelated molecules that each inhibit the same protein in the malaria parasite-ATP4. Here, we exploited the genetic tractability of P. knowlesi to replace its own ATP4 genes with orthologues from five human-infective species to understand the drug susceptibility differences among these parasites. We previously estimated the susceptibility to ATP4-targeting drugs of each species using clinical samples from malaria patients. These estimates closely matched those of the corresponding "hybrid" P. knowlesi parasites carrying introduced ATP4 genes. Thus, species-specific ATP4 inhibitor efficacy is directly determined by the sequence of the gene. Our novel approach to understanding cross-species susceptibility/resistance can strongly support the effort to develop antimalarials that effectively target all human malaria parasite species.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Plasmodium knowlesi , Animais , Humanos , Plasmodium knowlesi/genética , Antimaláricos/farmacologia , Adenosina Trifosfatases/metabolismo , Plasmodium falciparum , Malária Falciparum/parasitologia , Malária/parasitologia , Cátions/metabolismo , Trifosfato de Adenosina/metabolismo
14.
Methods Mol Biol ; 2470: 101-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881342

RESUMO

Synchronisation of Plasmodium cultures is essential to investigate the complexities of time-dependent events associated with the asexual blood stage of the malaria parasite life cycle. Here we describe a procedure using ML10, a highly specific inhibitor of the parasite cyclic GMP-dependent protein kinase (PKG), to attain high synchronicity of Plasmodium falciparum and P. knowlesi asexual blood-stage cultures and to obtain high levels of arrested mature schizonts as well as viable released merozoites. Additionally, we describe how to use ML10 to improve the transfection efficiency of P. falciparum parasites and also how to derive the half maximal effective concentration (EC50) of ML10 in other P. falciparum laboratory lines and clinical isolates.


Assuntos
Malária Falciparum , Parasitos , Plasmodium , Animais , Eritrócitos/metabolismo , Humanos , Malária Falciparum/parasitologia , Merozoítos/metabolismo , Parasitos/metabolismo , Plasmodium falciparum , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Protozoários/metabolismo
15.
medRxiv ; 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35664997

RESUMO

Background: There are no licensed vaccines against Plasmodium vivax , the most common cause of malaria outside of Africa. Methods: We conducted two Phase I/IIa clinical trials to assess the safety, immunogenicity and efficacy of two vaccines targeting region II of P. vivax Duffy-binding protein (PvDBPII). Recombinant viral vaccines (using ChAd63 and MVA vectors) were administered at 0, 2 months or in a delayed dosing regimen (0, 17, 19 months), whilst a protein/adjuvant formulation (PvDBPII/Matrix-M™) was administered monthly (0, 1, 2 months) or in a delayed dosing regimen (0, 1, 14 months). Delayed regimens were due to trial halts during the COVID-19 pandemic. Volunteers underwent heterologous controlled human malaria infection (CHMI) with blood-stage P. vivax parasites at 2-4 weeks following their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparison of parasite multiplication rate (PMR) in blood post-CHMI, modelled from parasitemia measured by quantitative polymerase-chain-reaction (qPCR). Results: Thirty-two volunteers were enrolled and vaccinated (n=16 for each vaccine). No safety concerns were identified. PvDBPII/Matrix-M™, given in the delayed dosing regimen, elicited the highest antibody responses and reduced the mean PMR following CHMI by 51% (range 36-66%; n=6) compared to unvaccinated controls (n=13). No other vaccine or regimen impacted parasite growth. In vivo growth inhibition of blood-stage P. vivax correlated with functional antibody readouts of vaccine immunogenicity. Conclusions: Vaccination of malaria-naïve adults with a delayed booster regimen of PvDBPII/ Matrix-M™ significantly reduces the growth of blood-stage P. vivax . Funded by the European Commission and Wellcome Trust; VAC069, VAC071 and VAC079 ClinicalTrials.gov numbers NCT03797989 , NCT04009096 and NCT04201431 .

16.
Front Genet ; 13: 855052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677565

RESUMO

Plasmodium knowlesi, a malaria parasite of Old World macaque monkeys, is used extensively to model Plasmodium biology. Recently, P. knowlesi was found in the human population of Southeast Asia, particularly Malaysia. P. knowlesi causes uncomplicated to severe and fatal malaria in the human host with features in common with the more prevalent and virulent malaria caused by Plasmodium falciparum. As such, P. knowlesi presents a unique opportunity to develop experimental translational model systems for malaria pathophysiology informed by clinical data from same-species human infections. Experimental lines of P. knowlesi represent well-characterized genetically stable parasites, and to maximize their utility as a backdrop for understanding malaria pathophysiology, genetically diverse contemporary clinical isolates, essentially wild-type, require comparable characterization. The Oxford Nanopore PCR-free long-read sequencing platform was used to sequence and de novo assemble P. knowlesi genomes from frozen clinical samples. The sequencing platform and assembly pipelines were designed to facilitate capturing data and describing, for the first time, P. knowlesi schizont-infected cell agglutination (SICA) var and Knowlesi-Interspersed Repeats (kir) multiple gene families in parasites acquired from nature. The SICAvar gene family members code for antigenically variant proteins analogous to the virulence-associated P. falciparum erythrocyte membrane protein (PfEMP1) multiple var gene family. Evidence presented here suggests that the SICAvar family members have arisen through a process of gene duplication, selection pressure, and variation. Highly evolving genes including PfEMP1family members tend to be restricted to relatively unstable sub-telomeric regions that drive change with core genes protected in genetically stable intrachromosomal locations. The comparable SICAvar and kir gene family members are counter-intuitively located across chromosomes. Here, we demonstrate that, in contrast to conserved core genes, SICAvar and kir genes occupy otherwise gene-sparse chromosomal locations that accommodate rapid evolution and change. The novel methods presented here offer the malaria research community not only new tools to generate comprehensive genome sequence data from small clinical samples but also new insight into the complexity of clinically important real-world parasites.

17.
Front Neurol ; 13: 833933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463123

RESUMO

Although prehospital stroke management is challenging, it is a crucial part of the acute stroke chain to enable equal access to highly specialised stroke care. It involves a critical understanding of players usually not specialized in acute stroke treatments. There is contradictory information about gender inequity in prehospital stroke detection, dispatch, and delivery to hospital stroke centers. The aim of this narrative review is to summarize the knowledge of gender differences in the first three stages of acute stroke management. Information on the detection of acute stroke symptoms by patients, their relatives, and bystanders is discussed. Women seem to have a better overall knowledge about stroke, although general understanding needs to be improved. However, older age and different social situations of women could be identified as reasons for reduced and delayed help-seeking. Dispatch and delivery lie within the responsibility of the emergency medical service. Differences in clinical presentation with symptoms mainly affecting general conditions could be identified as a crucial challenge leading to gender inequity in these stages. Improvement of stroke education has to be applied to tackle this inequal management. However, specifically designed projects and analyses are needed to understand more details of sex differences in prehospital stroke management, which is a necessary first step for the potential development of substantially improving strategies.

18.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819379

RESUMO

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


Assuntos
Eritrócitos/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/genética , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/fisiologia , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Animais , Eritrócitos/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50 , Locomoção , Proteínas de Membrana/metabolismo , Transdução de Sinais
19.
Am J Trop Med Hyg ; 106(1): 275-282, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781260

RESUMO

Plasmodium lactate dehydrogenase (pLDH) is a common target in malaria rapid diagnostic tests (RDTs). These commercial antibody capture assays target either Plasmodium falciparum-specific pLDH (PfLDH), P. vivax-specific pLDH (PvLDH), or a conserved epitope in all human malaria pLDH (PanLDH). However, there are no assays specifically targeting P. ovale, P. malariae or zoonotic parasites such as P. knowlesi and P. cynomolgi. A malaria multiplex array, carrying the specific antibody spots for PfLDH, PvLDH, and PanLDH has been previously developed. This study aimed to assess potential cross-reactivity between pLDH from various Plasmodium species and this array. We tested recombinant pLDH proteins, clinical samples for P. vivax, P. falciparum, P. ovale curtisi, and P. malariae; and in vitro cultured P. knowlesi and P. cynomolgi. P. ovale-specific pLDH (PoLDH) and P. malariae-specific pLDH (PmLDH) cross-reacted with the PfLDH and PanLDH spots. Plasmodium Knowlesi-specific pLDH (PkLDH) and P. cynomolgi-specific pLDH (PcLDH) cross-reacted with the PvLDH spot, but only PkLDH was recognized by the PanLDH spot. Plasmodium ovale and P. malariae can be differentiated from P. falciparum by the concentration ratios of PanLDH/PfLDH, which had mean (range) values of 4.56 (4.07-5.16) and 4.56 (3.43-6.54), respectively, whereas P. falciparum had a lower ratio of 1.12 (0.56-2.61). Plasmodium knowlesi had a similar PanLDH/PvLDH ratio value, with P. vivax having a mean value of 2.24 (1.37-2.79). The cross-reactivity pattern of pLDH can be a useful predictor to differentiate certain Plasmodium species. Cross-reactivity of the pLDH bands in RDTs requires further investigation.


Assuntos
L-Lactato Desidrogenase/sangue , Malária/diagnóstico , Plasmodium knowlesi/isolamento & purificação , Zoonoses/diagnóstico , Zoonoses/parasitologia , Animais , Antígenos de Protozoários/análise , Reações Cruzadas , Humanos , L-Lactato Desidrogenase/metabolismo , Plasmodium knowlesi/enzimologia , Especificidade da Espécie
20.
Artigo em Inglês | MEDLINE | ID: mdl-34315108

RESUMO

Several promising antimalarial drugs are currently being tested in human trials, such as artefenomel, cipargamin, ferroquine and ganaplacide. Many of these compounds were identified using high throughput screens against a single species of human malaria, Plasmodium falciparum, under the assumption that effectiveness against all malaria species will be similar, as has been observed for other antimalarial drugs. However, using our in vitro adapted line, we demonstrated recently that P. knowlesi is significantly less susceptible than P. falciparum to some new antimalarial drugs (e.g., cipargamin and DSM265), and more susceptible to others (e.g., ganaplacide). There is, therefore, an urgent need to determine the susceptibility profile of all human malaria species to the current generation of antimalarial compounds. We obtained ex vivo malaria samples from travellers returning to the United Kingdom and, using the [3H]hypoxanthine incorporation method, compared susceptibility to select established and experimental antimalarial agents among all major human infective Plasmodium species. We demonstrate that P. malariae and P. ovale spp. are significantly less susceptible than P. falciparum to cipargamin, DSM265 and AN13762, but are more susceptible to ganaplacide. Preliminary ex vivo data from single isolates of P. knowlesi and P. vivax demonstrate a similar profile. Our findings highlight the need to ensure cross species susceptibility profiles are determined early in the drug development pipeline. Our data can also be used to inform further drug development, and illustrate the utility of the P. knowlesi in vitro model as a scalable approach for predicting the drug susceptibility of non-falciparum malaria species in general.


Assuntos
Antimaláricos , Malária Falciparum , Malária Vivax , Plasmodium knowlesi , Plasmodium , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Plasmodium falciparum/genética , Plasmodium vivax
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...